A Baseline Model for Monodispersed Bubbly Flow


A Baseline Model for Monodispersed Bubbly Flow

Rzehak, R.; Ziegenhein, T.; Krepper, E.; Lucas, D.

CFD simulations of dispersed bubbly flow on the scale of technical equipment are feasible within the Eulerian two-fluid framework of interpenetrating continua. However, accurate numerical predictions rely on suitable closure models. A large body of work using different closure relations of varying degree of sophistication exists, but no complete, reliable, and robust formulation has been achieved so far.

As a step towards this goal, an attempt is made here to collect the best available description for all aspects known to be relevant for adiabatic bubbly flows where only momentum is exchanged between liquid and gas phases. The resulting baseline model is validated against a number of data sets taken from the literature. Quantitative deviations between simulated and measured values indicate the need for further model development. The main advantage however is, that no model adjustment has been made at all for the different data sets.

Keywords: dispersed gas liquid multiphase flow; Euler Euler two fluid model; fixed polydispersity; closure relations; CFD simulation; model validation

  • Lecture (Conference)
    Joint HZDR & ANSYS Conference - 11th Multphase Flow Conference & Short Course - Simulation, Experiment and Application, 26.-28.11.2013, Rossendorf, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19476