Use of Mineral Liberation Analysis (MLA) in the Characterization of Lithium-Bearing Micas


Use of Mineral Liberation Analysis (MLA) in the Characterization of Lithium-Bearing Micas

Gutzmer, J.; Sandmann, D.

The capabilities and opportunities of the application of automated mineralogy for the characterization of lithium-bear- ing zinnwaldite-micas are critically assessed. Samples of a crushed greisen-type ore comprising mostly of quartz, topaz and zinnwaldite (Li-rich mica) were exposed to further comminution by cone crusher and high voltage pulse power fragmentation. Product properties were analyzed by using a Mineral Liberation Analyser (MLA) and the obtained min- eralogical and mineral processing relevant parameters were carefully evaluated with special focus on the characteristics of zinnwaldite. The results illustrate that both samples contain a significant quantity of very fine particles that are prod- ucts of comminution. The modal mineralogy in the different sieve fractions is characterized by the accumulation of minerals of low hardness in the finest fraction and the enrichment of topaz, having a high hardness, in the somewhat larger fractions. Based on the results of mineral association data for zinnwaldite, a displacement of the muscovite-quartz ratio, in comparison to the results of modal mineralogy, was observed by indicating good quartz-zinnwaldite boundary breakage and weak muscovite-zinnwaldite breakage. Liberation as well as mineral grade recovery curves indicate that fraction -1000 to +500 μm is most suitable for beneficiation. The results of this study demonstrate that SEM-based im- age analysis, such as MLA, can effectively be used to investigate and evaluate phyllosilicate minerals in a fast and pre- cise way. It is shown that the results of MLA investigations, such as modal mineralogy, are in good agreement with other analytical methods such as quantitative X-ray powder diffraction.

Keywords: Mineral Liberation Analysis; Zinnwaldite; Conventional Comminution; High Voltage Pulse Power Fragmentation

  • Open Access Logo Journal of Minerals and Materials Characterization and Engineering 1(2013), 285-292
    Online First (2013) DOI: 10.4236/jmmce.2013.16043

Permalink: https://www.hzdr.de/publications/Publ-19502