Dependence of Ferromagnetic Resonance Behaviour on Chemical Disorder in Fe60Al40 Thin Films


Dependence of Ferromagnetic Resonance Behaviour on Chemical Disorder in Fe60Al40 Thin Films

Bali, R.; Schneider, T.; Gollwitzer, J.; Meutzner, F.; Boucher, R.; Potzger, K.; Bauch, J.; Fassbender, J.; Lenz, K.; Lindner, J.

We report on the influence of chemical disorder in Fe60Al40 thin films on their ferromagnetic resonance. Chemical disorder leads to increased nearest neighbour Fe-Fe magnetic interactions and plays a crucial role in inducing ferromagnetism. The saturation magnetization increases from 20 kA/m-1 for the chemically ordered film to 780 kA/m for disordered films. Disorder was induced by irradiation of Ne+ ions, and the depth-distribution of disorder was controlled by adjusting the ion-energy and -fluence. For moments aligned within the film plane, the resonant linewidth decreases with increasing ion-energy in the range from 2.5 to 30 keV, for a fixed ion-fluence. In-plane magnetic anisotropy is negligible in all cases. The linewidths for in-plane moment alignment are much larger than in materials that do not exhibit disorder induced ferromagnetism. These results may be explained by enhanced two-magnon scattering due to the presence of random defects, and help in preparing thin films with tailored spin-wave dynamic properties.

Involved research facilities

Related publications

  • Poster
    DPG Frühjahrstagung 2014, 30.03.-04.04.2014, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19691