Magnetization Reversal Mechanisms in Co-Antidot Arrays


Magnetization Reversal Mechanisms in Co-Antidot Arrays

Langer, M.; Bali, R.; Kowalska, E.; Neudert, A.; Lenz, K.; Potzger, K.; Kostylev, M.; Lindner, J.; Adeyeye, A.; Fassbender, J.

Co-antidots with holes arranged in the form of a square lattice, with lattice parameter of 415 nm and hole diameter d = 145 to 255 nm were fabricated using DUV photolithography. For arrays with film thickness of 50 nm, the angular dependence of the saturation field Hs shows presence of four-fold anisotropy with the hard axes along the <01> directions and easy axes was along the diagonal <11> directions. Spikes in the Hs were measured along the intermediate <12> directions. Kerr microscopy suggests that the reversal mechanism along the <01> is domain-wall (DW) depinning followed by propagation within the continuous channels along the <01>, whereas along the <11> the mechanism tends towards nucleation and growth. We postulate that the Hs-spikes occur because DW-propagation requires domino-like spin-reorientations through the continuous channels, whereas nucleation can only occur when a coherent region is formed with the spins oriented along the applied field. The frustration caused by the two possible spin-reorientation paths results in the larger Hs. We attempt to model these mechanisms using OOMMF and investigate the influence of varying d.

Involved research facilities

Related publications

  • Poster
    DPG Frühjahrstagung, 10.-15.03.2013, Regensburg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19692