Broadband fast terahertz detector based on graphene


Broadband fast terahertz detector based on graphene

Mittendorff, M.; Winnerl, S.; Kamann, J.; Eroms, J.; Weiss, D.; Schneider, H.; Helm, M.

Some sources of pulsed intense terahertz radiation such as free-electron lasers and gas lasers pumped by high-pressure CO2 lasers exist already for relatively long time. More recent developments like THz-generation via nonlinear processes in plasmas or lithiumniobate crystals as well as novel accelerator-based sources for coherent synchrotron radiation have greatly advanced the field of nonlinear terahertz optics [1,2]. Robust, simple and fast detectors are highly desirable for experiments at these sources, in particular if they are not naturally synchronized to a pulsed near-infrared laser. We present a graphene-based detector operated at room temperature featuring a rise time of 50 ps. It was tested at the free-electron laser FELBE in the frequency range from 1.3 THz to 38 THz.
The detector is based on an exfoliated graphene flake on Si/SiO2 coupled to a broadband logarithmic periodic antenna. The temporal resolution of the detector (rise time ~50 ps) is limited by the electronic circuitry. We show that high-resistive substrates are of crucial importance to keep RC-time constants short. The responsivity is about 5 nA/W in the investigated spectral range. While a linear dependence of the detector signal was found for small pulse energies, significant saturation occurred for larger pulse energies. We demonstrate that the nonlinearity provided by the saturation can be exploited in autocorrelation measurements. In this type of measurement the detector response is limited by the intrinsic carrier relaxation time but not by the electronic circuit, resulting in a temporal Resolution below 10 ps [3]. The high temporal resolution combined with room-temperature operation and high damage threshold makes the detector attractive for pulse diagnostics of intense THz sources. Furthermore the broadband response, which possibly can be extended towards the visible and UV spectral region by using different substrate materials, is ideal for characterizing the timing of pulses in multicolor experiments.
[1] M. C. Hoffmann and J. A. Fülöp, J. Phys. D: Appl. Phys. 44, 083001 (2011).
[2] H. Hirori, Hideki and K. Tanaka, IEEE J. Sel. Top. Quantum Electron. 19, 8401110 (2013).
[3] M. Mittendorff, S. Winnerl, J. Kamann, J. Eroms, D. Weiss, H. Schneider, and M. Helm, Appl. Phys. Lett. 103, 021113 (2013).

Keywords: fast detector; terahertz

Involved research facilities

Related publications

  • Lecture (Conference)
    6th Workshop on Terahertz Technology and Applications 2014, 11.-12.03.2014, Kaiserslautern, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-19707