Development and first experimental tests of Faraday cup array


Development and first experimental tests of Faraday cup array

Prokůpek, J.; Kaufman, J.; Margarone, D.; Krůs, M.; Velyhan, A.; Krása, J.; Burris-Mog, T.; Busold, S.; Deppert, O.; Cowan, T. E.; Korn, G.

A new type of Faraday cup, capable of detecting high energy charged particles produced in a high intensity laser-matter interaction environment, has recently been developed and demonstrated as a real-time detector based on the time-of-flight technique. An array of these Faraday cups was designed and constructed to cover different observation angles with respect to the target normal direction. Thus, it allows reconstruction of the spatial distribution of ion current density in the subcritical plasma region and the ability to visualise its time evolution through time-of-flight measurements, which cannot be achieved with standard laser optical interferometry. This is a unique method for two-dimensional visualisation of ion currents from laser-generated plasmas. A technical description of the new type of Faraday cup is introduced along with an ad hoc data analysis procedure. Experimental results obtained during campaigns at the Petawatt High-Energy Laser forHeavy Ion Experiments (GSI, Darmstadt) and at the Prague Asterix Laser System (AS CR) are presented. Advantages and limitations of the used diagnostic system are discussed.

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-19734