Conductivity type and crystal orientation of GaAs nanocrystals fabricated in silicon by ion implantation and flash lamp annealing


Conductivity type and crystal orientation of GaAs nanocrystals fabricated in silicon by ion implantation and flash lamp annealing

Prucnal, S.; Liedke, M. O.; Zhou, S.; Voelskow, M.; Mucklich, A.; Turek, M.; Zuk, J.; Skorupa, W.

The integration of III-V semiconductor material within silicon technology is crucial for performance of advanced electronic devices. This paper presents the investigations of microstructural and opto-electronic properties of GaAs quantum dots (QDs) formed in silicon by means of sequential ion implantation and flash lamp annealing (FLA). Formation of crystalline GaAs QDs with well-defined crystal orientation and conductivity type was confirmed by high resolution transmission electron microscopy and mu-Raman spectroscopy. The influence of the post implantation millisecond-range annealing on the evolution of the nanoparticles size, shape, crystallographic orientation and doping type of GaAs QDs is discussed.

Keywords: GaAs; Quantum dots; Ion implantation; Flash lamp annealing; Silicon

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-19744