Hydrogen engineering via plasma immersion ion implantation and flash lamp annealing in silicon-based solar cell substrates


Hydrogen engineering via plasma immersion ion implantation and flash lamp annealing in silicon-based solar cell substrates

Lipp Bregolin, F.; Krockert, K.; Prucnal, S.; Vines, L.; Hübner, R.; Svensson, B. G.; Wiesenhütter, K.; Möller, H.-J.; Skorupa, W.

Higher conversion efficiencies while reducing costs at the same time is the ultimate goal driving the advancement of solar cell development. In this work, solar cell emitters are formed in Si substrates by plasma immersion ion implantation (PIII) of phosphine and posterior millisecond-range flash lamp annealing (FLA). In Si-based solar cells, hydrogen plays a fundamental role due to its excellent passivation properties and the optical and electrical properties of the fabricated emitters will be studied, with particular interest in their dependence on the hydrogen content present in the samples. The influence of different FLA annealing parameters and a comparison with traditional thermal treatments such as rapid thermal annealing (RTA) and furnace annealing (FA) will be presented. The samples treated by FLA at 1200 °C for 20 ms in forming gas shows sheet resistance values of the order of 60 Ω/□, and minority carrier diffusion lengths in the range of ~ 200 µm without the use of a capping layer for surface passivation. Those results are significantly better than the ones observed from RTA or FA annealed samples. The simultaneous implantation of hydrogen during the doping process combined with optimal FLA annealing parameters gave promising results for the application of this technology in replacing the conventional POCl3 deposition and diffusion.

Keywords: plasma immersion ion implantation; hydrogen engineering; emmiter formation; flash lamp annealing; photovoltaics; solar cell

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-19812