Sorption data: Ways from a plain collection to recommended values


Sorption data: Ways from a plain collection to recommended values

Bok, F.; Richter, A.; Brendler, V.

For geochemical modeling of scenarios for the disposal of hazardous radioactive and (chemo)toxic waste, comprehensive and consistent thermodynamic data are required as well as sorption data for the surrounding host rocks. Whereas there are several projects running world-wide to arrive at the comprehensive and consistent thermodynamic data base for the aqueous phase and forming solids, the situation is much worse concerning the reactions on the mineral-water interface. For important processes such as sorption, ion exchange or surface precipitation incompleteness and inconsistencies, restricted ranges of variation (temperature, density, pressure, ionic strength) are abundant leading to hardly comparable results in geochemical modeling.
RES³T – the Rossendorf Expert System for Surface and Sorption Thermodynamics (http://www.hzdr.de/res3t) – is a free-for-use digitized thermodynamic sorption database utilizing surface complexation models (SCM). It is mineral-specific and can therefore also be used for complex real systems such as rocks or soils. Data records comprise of mineral properties, specific surface area values, characteristics of surface binding sites and their protolysis, sorption ligand information, and surface complexation reactions. An extensive bibliography is included, providing links not only to the above listed data items, but also to the primary reference. Currently efforts started to combine RES³T with the thermodynamic database THEREDA (http://www.thereda.de) to provide a comprehensive and consistent database for a holistic geochemical modeling.
Sorption speciation calculations of radionuclides on mineral surfaces will be presented, showing the actual consequences of inconsistent and scattered sorption data that can be found in literature, as well as the possibilities of the RES³T database for calculating radionuclide sorption onto complex geologic formations, e.g. the overburden of a nuclear waste disposal. Generally, RES³T proved to be a powerful tool for identifying data gaps for combinations of minerals and sorbing radionuclide essential for the risk assessment of waste disposals or in accident analysis.

Keywords: RES³T; Rossendorf Expert System for Surface and Sorption Thermodynamics; database; THEREDA

  • Invited lecture (Conferences)
    248th ACS National Meeting, 10.-14.08.2014, San Francisco, USA

Permalink: https://www.hzdr.de/publications/Publ-20188