Synthetic Diagnostics of Radiation Phenomena in the Particle-in-Cell Code PIConGPU


Synthetic Diagnostics of Radiation Phenomena in the Particle-in-Cell Code PIConGPU

Pausch, R.; Bussmann, M.; Burau, H.; Debus, A.; Huebl, A.; Irman, A.; Schramm, U.; Widera, R.

Synthetic diagnostics in particle-in-cell codes provide physical quantities to the scientist that can be directly compared to experiment. We present simulations of laser-wakefield acceleration of electrons and on the dynamics of the relativistic Kelvin-Helmholtz Instability using the code PIConGPU. With PIConGPU it is possible to compute the radiation of every single electron in the simulation caused by acceleration by computing the Lienard-Wiechert Potentials, including both coherent and incoherent radiation. With GPU-accelerated codes Petaflop performance has become possible.

Keywords: radiation; PIConGPU; synthetic diagnostics; laser-wakefield acceleration; Kelvin-Helmholtz Instability

  • Lecture (Conference)
    DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM), 30.03.-04.04.2014, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-20246