Large Eddy Simulation for a rectangular bubble column


Large Eddy Simulation for a rectangular bubble column

Ma, T.; Ziegenhein, T.; Lucas, D.; Fröhlich, J.; Krepper, E.

In vielen verfahrenstechnischen Apparaten wird mit Mehrphasenströmungen gearbeitet, bei denen eine kontinuierliche Flüssigkeitsphase und eine disperse gasförmige Phase vorliegen. Die Turbulenz in der Flüssigkeitsphase ist ein wichtiges Phänomen in Mehrphasenströmungen. Sie hat einen starken Einfluss auf die lokale Verteilung der dispersen Phasen.
Eine Blasensäule stellt eine gute Experimentiereinrichtung für die Untersuchung von turbulenten Phänomen in Mehrphasenströmungen dar. In den CFD Simulationen für Blasensäulen werden traditionell RANS Modelle zur Turbulenzmodellierung verwendet, allerdings wird die Turbulenz nur isotrop modelliert.
LES bietet die Möglichkeit die großskaligen anisotropen Turbulenzen direkt aufzulösen und die kleinskaligen mit einem Subgrid-Scale (SGS) Model zu modellieren. Die Filterung basiert meistens direkt auf der Gitterweite. In dieser Arbeit wird die Euler-Euler Large Eddy Simulation (LES) für eine rechteckige Blasensäule durchgeführt und mit experimentellen Daten von (Akbar 2012) verglichen. Der Euler-Euler Ansatz verlangt eine Gitterweite größer als die Blasengröße, sodass die Gitterweite in den LES Rechnungen für Blasenströmungen in der Meso-Skala bzw. im Blasengrößen Bereich liegt. Für Blasenströmungen mit geringen Leerrohrgeschwindigkeiten ist die Blasen induzierte Turbulenz dominant. Für solche Fälle stellt die LES nicht die optimale Option zur Turbulenzvorhersage dar. Die Ursache besteht darin, dass die größte Fluktuation in der Nähe der Blasenoberfläche liegt und zum Großteil nicht aufgelöst, sondern mit einem sehr einfachen SGS Modell modelliert wird. Hingegen werden für die Blasenströmung mit höheren Leerrohrgeschwindigkeiten gute Ergebnisse erzielt, da großskalige Turbulenzen vorhanden und aufgelöst werden. In der Auswertung wird die SGS turbulente kinetische Energie mit zwei Methoden zur Abschätzung ebenfalls berücksichtigt.

[Akbar 2012] Akbar MHM, Hayashi K, Hosokawa S, Tomiyama A. Bubble tracking Simulation of Bubble-induced Pseudo Turbulence. 6th Japanese-European Two-Phase Flow Group Meeting, 2012

Involved research facilities

  • TOPFLOW Facility
  • Poster
    Jahrestreffen der Fachgruppen Computational Fluid Dynamics, Mischvorgänge und Rheologie, 24.-25.02.2014, Würzburg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-20447