Plasma based nanotechnology against corrosion of CuZn and TiAl alloys.


Plasma based nanotechnology against corrosion of CuZn and TiAl alloys.

Pelic, B.; Bregolin, F. L.; Prucnal, S.; Yankov, R.; Skorupa, W.

Experiments have been undertaken to explore the improvement of the aqueous corrosion and high temperature oxidation of CuZn and TiAl, respectively, by applying plasma immersion ion implantation (PI3).
The atmospheric corrosion of the tongues within the reed pipes which consist of a Cu-Zn alloy (namely brass) is strongly enhanced by traces of VOC (acetic acid vapors) and also the alloy’s instability caused by dezincification. A significant improvement in corrosion resistance has been achieved by applying a 30 nm aluminum oxide film using pulsed laser deposition (PLD) and implanting nitrogen ions into the near surface and the interface regions. In the case of γ-TiAl alloys which exhibit poor oxidation resistance, despite their good mechanical properties at elevated temperatures, this limits the replacement of the nowadays used heavy components made of Ni-alloys. A significant improvement in high temperature oxidation resistance of TiAl alloys (up to 900 °C) has been achieved by implanting fluorine ions (1017 cm-2) at 30 keV into the alloy’s subsurface using PI3 process. A TiAl alloy modified in this way has been shown to acquire a stable, adherent and highly protective alumina scale (Al2O3) under high temperature oxidation in air. The influence of the implanted N+ into CuZn and F+ into TiAl samples on the corrosion process has been investigated. For the sample evaluation, different characterization methods including scanning electron microscope with energy dispersive X-ray spectroscopy (SEM / EDX), Auger electron spectroscopy (AES), Rutherford backscattering spectroscopy (RBS), Elastic recoil detection analysis (ERDA), and Dektak stylus profiling have been applied to determine the chemical composition, the elemental depth profiles, roughness and defect formation of the samples before and after exposure.

Keywords: Plasma immersion ion implantation (PI3); Pulsed laser deposition (PLD); corrosion of reed organ pipes; CuZn alloys; TiAl alloys; oxidation protection

Involved research facilities

Related publications

  • Lecture (Conference)
    ION 2014 X-th INTERNATIONAL CONFERENCE on Ion Implantation and Other Applications of Ions and Electrons, 23.-26.06.2014, Kazimierz Dolny, Poland

Permalink: https://www.hzdr.de/publications/Publ-20709