Evolution of the Pauli spin-paramagnetic effect on the upper critical fields of single-crystalline KxFe2-ySe2-zSz


Evolution of the Pauli spin-paramagnetic effect on the upper critical fields of single-crystalline KxFe2-ySe2-zSz

Wolff-Fabris, F.; Lei, H.; Wosnitza, J.; Petrovic, C.

We have studied the temperature dependence of the upper critical fields µ0Hc2 of KxFe2-ySe2-zSz single crystals up to 60 T. The µ0Hc2 for H parallel to ab and H parallel to c decrease with increasing sulfur content. The detailed analysis using Werthamer-Helfand-Hohenberg theory including the Pauli spin-paramagnetic effect shows that µ0Hc2 for H parallel to ab is dominated by the spin-paramagnetic effect, which diminishes with higher S content, whereas µ0Hc2 for H parallel to c shows a linear temperature dependence with an upturn at high fields. The latter observation can be ascribed to multiband effects that become weaker for higher S content. This results in an enhanced anisotropy of µ0Hc2 for high S content due to the different trends of the spin-paramagnetic and multiband effect for H parallel to ab and H parallel to c, respectively.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)

Permalink: https://www.hzdr.de/publications/Publ-20747