Investigation of the life cycle of titania NPs using radiolabeling techniques for highly sensitive NP detection


Investigation of the life cycle of titania NPs using radiolabeling techniques for highly sensitive NP detection

Hildebrand, H.; Franke, K.; Schymura, S.; Freyer, A.; Bilz, E.; Mehnert, R.; Mai, E.; Isaacson, C.; Schug, H.; Schirmer, K.; Ammann, A.; Sigg, L.

Production and application of TiO2-containing nanocomposites such as functional surface coatings have significantly increased in recent years. These coatings are used in a wide field of applications ranging from self-cleaning and scratch resistant surfaces to biocidal coatings. Therefore, knowledge about potential nanoparticle (NP) release due to aging or abrasion of these coatings is essential for safe application of these materials.
Radiolabeling of the NPs provides a method to sensitively detect NPs and is feasible for qualitative and quantitative fate and effects determination. With this detection method, evaluation of NPs fate during aging and abrasion of nanocomposites, estimation of release rates, transport of NPs in the environment and up-take and effects with organisms can be readily quantified.
The joint research project NanoTrack used model surface coatings in an acrylate-based formulation containing TiO2 NPs (d = 21 nm, P25, Evonik Industries). Coatings were produced by application of 25 µm thick nanocomposite layers on a substrate followed by curing and later weathered under standard laboratory test conditions. Due to the low resistivity of this model system, the organic matrix of the surface coating was severely degraded and NPs were partly released. Scanning electron microscopy showed that mostly aggregates and agglomerates of NPs were released and only a small fraction of primary NPs can be expected to be discharged. For industrial nanocomposites (realistic case), the same weathering procedure resulted in release of only small amounts of TiO2-NPs. Nevertheless, radioactivity detection methods proved this release.
Current studies on the environmental fate and effects of nanoparticles are limited by the inability to detect and quantify nanoparticles in complex environmental test systems and radiolabeling nanoparticles may provide a solution to this limitation. Isotopic labeling was developed using a low-temperature diffusive method of radionuclides implementation resulting in [44Ti]TiO2. Chemical composition, particle size distributions and morphology of the radiolabeled NPs remained unaltered compared to the original material. Additionally, [48V]TiO2, which was produced via proton irradiation of TiO2 NPs (Abbas et al., 2010), was applied within the test systems.
For getting knowledge about transport of TiO2, interactions of relevant concentrations of these NPs with environmental media (such as humic acids or natural sediments) were studied. Results show that depending on geochemical conditions, transport of TiO2 in groundwater sediments can be expected, especially in presence of humic acids which act as natural stabilisers for the NPs.
Another important aspect is the ecotoxicological impact of the released NPs. As TiO2 NP aggregate and sediment from the water column, exposure of benthic organisms to TiO2 NP is expected. Exposure of [48V]TiO2 NP to the nematode Plectus aquatilis resulted in bioconcentration of the [48V]TiO2 NPs by the nematode, which indicates that transport of TiO2 NPs up the food chain is possible.
The integrated examination of NPs in surface coatings in terms of production, aging and abrasion, NP release and their fate and transport in the environment provides a data base for risk assessment and validation or possibly adaptation of new nanocomposite production.

Abbas et al. (2010) J Nanopart Res 12:2435-2443.

Keywords: Titania; Radiolabeling; Nanoparticles

  • Lecture (Conference)
    NanoSafe 2014, 18.-20.11.2014, Grenoble, France

Permalink: https://www.hzdr.de/publications/Publ-20764