Fate and transport of engineered nanoparticles along the exposure pathway wastewater - sludge - plant


Fate and transport of engineered nanoparticles along the exposure pathway wastewater - sludge - plant

Hildebrand, H.; Schymura, S.; Schneider, P.; Lange, T.; Ziegler, K.; Franke, K.

The potential risks accompanying the rising use of nanotechnology are in dire need of a careful assessment. Wastewater treatment plants (WWTP) are in a key position for managing the potential risks of nanoparticles (NP) load in urban and industrial wastewater. They have to deal with the specific conditions of NP polluted wastewater and have to tackle the task of removing NP from the purified water to guarantee maximum safety of the WWTP effluent for the environment and humans. At the same time, WWTPs can potentially act as sources of NP release through the secondary uses of WWT sludge in agriculture and landscaping.
The recently started project “nanoSuppe” aims on the development of a conclusive picture of NP behaviour in WWTPs and their further fate in potential sludge uses up to the possible reintroduction in the food chain by uptake in plants. To reach this goal a strong international consortium from WWTPs, related industries, governmental agencies and research centres is formed. The project is focused on engineered NPs such as TiO2, CeO2, multiwalled carbon nanotubes (MWCNT) and quantum dots which might reach wastewater treatment plants e.g. through the use of consumer products (such as sunscreen) or industrial processes.
The research strategy is comprised of a thorough characterization of NPs in WWTPs from lab to field scale, including the development of predictive models of the exposure and the impact on society and environment. In this context, typical scenarios of municipal and industrial wastewater treatment technologies are evaluated and their impact on the fate of NPs with various degradation and modification levels is investigated. Furthermore, the bioavailability and the possible introduction of NPs into the food chain from the agricultural use of sewage sludge (typical used as fertilizer or for landscaping) is investigated by studying the NP extractability from soils and sediments as the crucial parameter for environmental mobility and transport of NPs and the uptake in and toxicity to various agricultural plants such as cultivated radish.
For evaluation of the transport and behaviour of NPs in highly complex media such as wastewater, sludge or plants, a reliable and sensitive detection method is the crucial parameter. Therefore, radiolabeling strategies for the NPs under study are developed. The use of radiolabeled NPs ensures identification, localisation and quantification of NPs even under the anticipated low environmentally relevant concentrations despite the highly complex media (waste water, sludge, soil, plant) and background levels of natural NPs, colloids or substances of the same elemental composition. For MWCNTs, detection in environments with a high carbon background can be realised.
Within this presentation, research strategies, project partners and first results from the collaborative project “nanoSuppe” are presented and open for discussion.

Keywords: Nanoparticles; Transport; Wastewater treatment; Radiolabeling

  • Poster
    NanoSafe 2014, 18.-20.11.2014, Grenoble, France

Permalink: https://www.hzdr.de/publications/Publ-20765