Plasma-based nanotechnology against corrosion of organ pipes


Plasma-based nanotechnology against corrosion of organ pipes

Pelic, B.; Skorupa, W.

Experiments have been undertaken to explore the improvement of aqueous corrosion of Cu-Zn, by applying plasma immersion ion implantation (PI3).
The atmospheric corrosion of the tongues within the reed pipes which consist of a Cu-20Zn alloy (namely brass) is strongly enhanced by traces of acid vapors (from wooden parts and glue) and also the alloy’s instability caused by dezincification. A significant improvement in corrosion resistance has been achieved by applying a 30 nm aluminum oxide film using pulsed laser deposition (PLD) and implanting nitrogen ions into the near surface and the interface regions. The influence of the implanted N+ into CuZn and F+ into TiAl samples on the corrosion process has been investigated. For the sample evaluation, different characterization methods including scanning electron microscope with energy dispersive X-ray spectroscopy (SEM / EDX), Auger electron spectroscopy (AES), Rutherford backscattering spectroscopy (RBS), and Dektak stylus profiling have been applied to determine the chemical composition, the elemental depth profiles, roughness and defect formation of the samples before and after exposure.

Keywords: Plasma immersion ion implantation (PI3); Pulsed laser deposition (PLD); corrosion of organ pipes; Cu-Zn alloys; PbSn alloys

Involved research facilities

Related publications

  • Invited lecture (Conferences)
    Final conference of the EU research project ''EU-PANNA'', 04.09.2014, Berlin, Germany

Permalink: https://www.hzdr.de/publications/Publ-20782