Melt flow and temperature gradient effects on freckle formation


Melt flow and temperature gradient effects on freckle formation

Shevchenko, N.; Roshchupkina, O.; Eckert, S.

A visualization of the segregation freckle formation and the main convection pattern in solidifying Ga - In alloys was obtained by using the X-ray imaging technique [1, 2]. A Ga - In alloy was used because its density variation and thermo-physical properties are similar to many commercial alloys. Furthermore, it has a very good X-ray contrast and shows a melting point near room temperature. Recently, formation of stable chimney at several solidification conditions and captured the solute distribution and flow velocities were reported [2]. Variations of the vertical and lateral temperature gradients induce modifications of the melt flow pattern, which lead to different segregation structures.
In the case of solidification at higher vertical temperature gradients (up to 2 K/mm), we identified a converging flow ahead of the mushy zone coming from the side walls. Such flow patterns are driven by the lateral temperature gradient and the convex shape of the solidification front. This leads to a continuous accumulation of solute in the central part of the solidification cell followed by a remelting of the solid fraction and the occurrence of a sustaining chimney. This mechanism of chimney formation is different as compared to the case where the evolution of the segregation channel is related to any initial growth defect.
Variations of the lateral temperature gradient by additional side cooling lead to a collapse of the double-vortex convection over entire cell volume. A more complicated flow pattern occurs consisting of multiple convection rolls along the solid - liquid interface. At such solidification conditions a sustainable development of stable chimneys was rarely observed.

Keywords: Visualization; X-ray radioscopy; freckle formation; solid liquid interface; flow patterns; temperature gradient

  • Lecture (Conference)
    4th International Conference on Advances in Solidification Processes, 08.-11.07.2014, Old Windsor, United Kingdom

Permalink: https://www.hzdr.de/publications/Publ-20840