Brilliant and efficient optical free-electron lasers with Traveling-Wave Thomson-Scattering


Brilliant and efficient optical free-electron lasers with Traveling-Wave Thomson-Scattering

Steiniger, K.; Debus, A.; Irman, A.; Jochmann, A.; Pausch, R.; Schramm, U.; Bussmann, M.

We demonstrate that optical free-electron lasers (OFELs) realized with Traveling-Wave Thomson-Scattering (TWTS) are by orders of magnitude more efficient and brilliant than corresponding OFELs utilizing head-on Thomson scattering geometries. In addition, we emphasize that TWTS OFELs as opposed to standard head-on Thomson scattering geometries scale favorably with regard to space-charge effects degrading emittance, energy losses through photon recoil and transverse coherence of the resulting FEL beam. The presented TWTS OFELs scenarios are assumed to be driven either by conventional, rf-accelerated electrons or by currently available laser wakefield-accelerated electrons featuring energy spreads at the one percent level.

Keywords: Traveling Wave; Thomson scattering; optical FEL; LWFA; EUV; X-ray

  • Open Access Logo Contribution to proceedings
    16th Advanced Accelerator Concepts Workshop (AAC 2014), 13.07.-18.09.2014, San Jose, CA, USA
    AAC 2014 Proceedings: AIP Publishing, 978-0-7354-1439-6
    DOI: 10.1063/1.4965673
    Cited 2 times in Scopus

Permalink: https://www.hzdr.de/publications/Publ-20886