Anisotropy of absorption bleaching and carrier relaxation in graphene


Anisotropy of absorption bleaching and carrier relaxation in graphene

Winnerl, S.; Mittendorff, M.; Winzer, T.; Malic, E.; Knorr, A.; Berger, C.; de Heer, W. A.; Schneider, H.; Helm, M.

In the energy region between –1 eV and 1 eV the band structure of graphene is in good approximation described by identical isotropic Dirac cones for electrons and holes, respectively. Therefore, optical properties for interband excitations are typically considered to be isotropic for photon energies below 2 eV. However, our pump-probe experiments at a photon energy of 1.6 eV reveal a pronounced anisotropy in both the excitation characteristics and the subsequent relaxation dynamics. The anisotropy with 2-fold symmetry is induced by the linear polarization of the pump radiation. We compare the experimental results with calculations based on the density matrix formalism and show that optical phonons are mainly responsible for reaching an isotropic carrier distribution.
In the experiments, carried out on multilayer epitaxial graphene, the angle between the polarization of pump and probe beam was varied. Pumping and probing with parallel polarization resulted in two times larger pump-induced transmission as compared to pumping and probing with orthogonal polarization [1]. The initial relaxation after the transmission maximum is faster in the parallel polarization configuration. For time delays larger than 150 fs the induced transmission is similar for the two polarization configurations, indicating that an isotropic carrier distribution is reached. The observed anisotropy in the induced transmission is direct evidence for an anisotropic carrier distribution in k-space. This anisotropy has been predicted by theory [2]. Carriers are preferentially excited in directions perpendicular to the polarization vector of the pump beam. Microscopic modelling, which describes the experimental finding well, allows us to attribute the fast initial relaxation to collinear carrier-carrier scattering. Scattering via optical phonons is mainly responsible for reaching an isotropic distribution.
The results are of fundamental importance as they concern an aspect of the carrier dynamics that has escaped experimental observation so far, despite the large number of publications describing near-infrared pump-probe experiments on graphene. With respect to applications our findings may enable all-optical switches that react differently to pulses of different polarization direction.

References
[1] M. Mittendorff, T. Winzer, E. Malic, A. Knorr, C. Berger, W.A. de Heer, H. Schneider, and M. Helm, Nano Lett. (2014) dx.doi.org/10.1021/nl404730y.
[2] M. Malic, T. Winzer, and A. Knorr, Appl. Phys. Lett. 101, 221115 (2012).

Keywords: Carrier dynamics; ultrafast spectroscopy; graphene

Involved research facilities

Related publications

  • Poster
    Graphene Week, 23.-27.06.2014, Goteborg, Sweden

Permalink: https://www.hzdr.de/publications/Publ-20962