Ferromagnetic InMnAs with perpendicular magnetic anisotropy synthesized by ion implantation


Ferromagnetic InMnAs with perpendicular magnetic anisotropy synthesized by ion implantation

Yuan, Y.; Khalid, M.; Wang, Y.; Weschke, E.; Skorupa, W.; Helm, M.; Zhou, S.

Due to the great potential application in spintronic device, III-Mn-V dilute magnetic semiconductors (DMS) have drawn significant attention during the past two decades. Although of the model member GaMnAs (mostly be prepared by low-temperature molecule beam epitaxy: LTMBE) have been comprehensively investigated, the challenge for preparing other DMS such as InMnAs still exists. Therefore, the understanding about the full family III-Mn-V DMS is far from satisfaction. Ferromagnetic DMS GaMnAs and GaMnP were firstly obtained alternatively by Mn ion implantation and pulsed laser annealing [1, 2], a method rather than LTMBE. The Mn concentration and depth could be controlled through implanting fluence and implanting energy, respectively. When annealing under pulsed laser, due to high temperature gratitude, the large regrowth velocity could trap Mn atoms into the substitutional sites, which is quite effective to obtain high quality laser with less defects which can act as double donors and be harmful to ferromagnetism.
We prepared ferromagnetic InMnAs with different Mn concentrations by ion implantation and pulsed laser annealing. The formation of an epitaxial InMnAs on InAs substrates was proved by Rutherford Backscatting/Channeling and X-ray diffraction. The Curie temperature could be as high as around 75 K when the Mn concentration is around 8%. The out-of-plane direction is the easy axis, originating from the compreassive strain along the perpendicular direction, as expected from the case of GaMnAs [3, 4]. The perpendicular anisotropy is particularly useful for exploiting spintronics functionalities, such as current induced magnetization switching.

[1] M. A. Scarpulla et al. Phys. Rev. Lett., 95, 207204 (2005)
[2] M. A. Scarpulla et al. Appl. Phys. Lett., 82, 1251 (2003)
[3] Shengqiang Zhou et al. APEX, 5, 093007 (2012)
[4] K. W. Edmonds et al. Phys. Rev. Lett., 96 117207 (2006)

Keywords: InMnAs; Ferromagnetic Semiconductors; Ion implantation

Involved research facilities

Related publications

  • Poster
    International Conference on Ion Beam Modification of Materials, 14.-19.09.2014, leuven, Belgium
  • Lecture (Conference)
    DPG Frühjahrstagung 2015, 15.-20.03.2015, Berlin, Germany

Permalink: https://www.hzdr.de/publications/Publ-21014