Process-based forward numerical ecological modelling for carbonate sedimentary basins


Process-based forward numerical ecological modelling for carbonate sedimentary basins

Clavera-Gispert, R.; Carmona, A.; Gratacós, O.; Tolosana-Delgado, R.

Nowadays, numerical modelling is a significant tool used both by researchers and the industry in the study of sedimentary basins, since it allows to quantify the simulated processes and to determine interactions among them. One of such programs is SIMSAFADIM-CLASTIC, a 3D forward-model process-based code to simulate the sedimentation in a marine basin at geological scale. It models the fluid flow, siliciclastic transport and sedimentation, and carbonate production. In this article, we present the last improvements in carbonate production, in particular the usage of Generalized Lotka-Volterra equations, that include logistic growth and interaction among species. Logistic growth is linked to environment parameters such as water depth, energy of the medium, and slope to the model the growing of species. The environmental parameters are factorized and combined to obtain an environment parameter that is applied to compute the modelled species development. The interaction among species is quantified using the community matrix that captures the beneficial or detrimental effects of the presence of each species on the other. A theoretical example of a carbonate ramp is computed to model the interaction among carbonate and siliciclastic sediment, the affection of environmental parameters to the modelled species, and the interaction among species. The distribution of the modelled species associations in the theoretical example is compared with Asmari Formation in Iran and Ragusa Platform in Italy.

Keywords: Forward-Model; process-based; sedimentary basin; ecological model; carbonate production; SIMSAFADIM-CLASTIC

Permalink: https://www.hzdr.de/publications/Publ-21193