Smart carriers for advanced nano-sensors and tissue engineering applications.


Smart carriers for advanced nano-sensors and tissue engineering applications.

Wiesenhütter, K.; Skorupa, I.; Rüb, M.; Müller, M.; Skorupa, W.; Schmidt, O. G.; Schmidt, H.

A paramount drive of the rapidly growing biotechnology sector is the further development of intelligent, highly-efficient and inexpensive concepts for biosensors. As the key component of a biochip platform, biosensors hold a responsibility for immobilization, modification, transport and detection of a variety of biological analytes broadly utilized in health care, food industry and environmental monitoring. To augment the overall biosensor performance, much effort has been dedicated to designate the new, superior carrier materials, which permit easy-to-control immobilization of the target analytes. Consequently, herein we do propose a novel, promising concept for the smart carriers’ fabrication which is named PolCarr. PolCarr consists of doped silicon wafers and ultra-thin insulating top layers and exploits surface-near electrostatic forces (SNEF) [1-2] for the selective adsorption of electrically polarizable bioanalytes and functionalized polymers [3]. The binding and release of molecules onto the PolCarr substrate is purely driven by SNEF. By attaching a structured bottom electrode to locally doped silicon wafers and by a careful voltage altering, the SNEF can precisely be controlled on the nm-length scale, enabling realization of new, advanced products for manifold medical applications (for instance: nano-sensors). Further on, the excellent control degree at both the nm- and µm-range and the superb inertness of SNEF to environmental influences make PolCarr carriers very attractive candidates for tissue engineering and regenerative medicine, as they allow the growth of the target cells in a highly-desirable ordered manner. As PolCarr permits exceptionally facile manufacture by ion implantation and thermal dopant activation [4] and as PolCarr is compatible with well-developed standard semiconductor processing, the significant throughput and overall cost-reduction associated with the entire carrier’s production and its subsequent use as an integral part of a medical device (e.g.: biochip), can be achieved. Considering the whole benefits offered by our smart carriers, we strongly believe that the PolCarr concept can thoroughly transform traditional biosensor- and tissue engineering-oriented technologies [5]. Finally, the unique selling points of the innovative and proprietary technology offer from our point of view a high value proposition compared to state of the art technology. In order to protect the valuable intellectual property, patent applications were filed in 2011 and 2012. For the future commercialization of the technology a spin-off company is planned. The start-up team is formed by an experienced business developer and key scientists. Cooperations for the biochip development are already established. In addition, the team is supported by technology transfer partners of the Helmholtz Zentrum Dresden Rossendorf. [1] Quantitative dopant profiling in semiconductors: A Kelvin probe force microscopy model, C. Baumgart, M. Helm, H. Schmidt, Phys. Rev. B 80 (2009) 085305. [2] Kelvin probe force microscopy in the presence of intrinsic local electric fields, C. Baumgart, A.-D. Müller, F. Müller, H. Schmidt, Phys. Stat. Sol. (A) 208 (2011) 777–789. [3] Kelvin probe force microscopy for characterizing doped semiconductors for future sensor applications in nano- and biotechnology, H. Schmidt, S. Habicht, S. Feste, A.D. Müller, O.G. Schmidt, Appl. Surf. Sci. 281 (2013) 24-29 (invited). [4] Subsecond Annealing of Advanced Materials Annealing by Lasers, Flash Lamps and Swift Heavy Ions (Eds.: Wolfgang Skorupa, Heidemarie Schmidt), Springer-Verlag, ISBN: 978-3-319-03130-9 (2014). [5] Selective polyelectrolyte adsorption at novel charge patterned carrier materials for future biosensor applications, M. Müller, B. Urban, A.-D. Müller, M. Rüb, K. Wiesenhütter, I. Skorupa, O.G. Schmidt, H. Schmidt, Materials (2014), in preparation (invited).

Keywords: Biotechnology; biosensors; tissue engineering; carriers; doped Si-wafers; Surface-Near Electrostatic Forces

Involved research facilities

Related publications

  • Poster
    Saxon Biotechnology Symposium 2014, Dresden, 19.03.2014, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-21210