Advanced AZO processing via flash lamp annealing.


Advanced AZO processing via flash lamp annealing.

Bregolin, F. L.; Lindberg, P.; Wiesenhütter, K.; Vines, L.; Prucnal, S.; Svensson, B.; Skorupa, W.

Currently, indium tin oxide (ITO) is the most widely used transparent conductive oxide due to its outstanding properties. However, because of its high cost, several alternatives are being sought to replace it. Among them, the aluminum-doped zinc oxide (AZO) films are one of the most promising candidates for PV applications due their low resistivity, high transparency and most of all, their relative low cost of fabrication.
In this work, AZO films were deposited over Si wafers via r.f. magnetron sputtering and subsequently treated by millisecond-range flash lamp annealing (FLA). The fabricated layers were then characterized by sheet resistance, photoluminescence spectroscopy, X-ray diffraction and Hall effect measurements. The influence of the deposition temperature and FLA parameters on the microstructure and optoelectronic response of the AZO layers was studied in detail. It was demonstrated that the FLA technique significantly improves the electrical conductivity of the as-deposited AZO layers due to the Al activation, the increase in crystallinity as well as the passivation of defects and grain boundaries. In particular, the room temperature sputtered AZO films subsequently treated by FLA have shown performance characteristics similar to those sputtered at 400 ºC, opening the possibility for further cost reductions in the fabrication process. The FLA technique is a cost-effective and high-throughput alternative for the processing of Si-based heterojunction solar cells.

Keywords: Transparent Conductive Oxides; Al-doped ZnO; Flash Lamp Annealig; Photovoltaics

Involved research facilities

Related publications

  • Poster
    E-MRS Spring Meeting 2014, 26.-30.05.2014, Lille, France

Permalink: https://www.hzdr.de/publications/Publ-21212