Surface solid and liquid phase processing in the ms-range using flash lamp annealing.


Surface solid and liquid phase processing in the ms-range using flash lamp annealing.

Wiesenhütter, K.; Schumann, T.; Prucnal, S.; Bregolin, F.; Wutzler, R.; Reichel, D.; Mathey, A.; Zichner, R.; Lindberg, P.; Vines, L.; Wiesenhütter, U.; Svensson, B. G.; Skorupa, W.

Annealing is one of the oldest methods utilized by mankind for the manufacture of materials. Over the past millennium, thermal processing has evolved from its simple form to a highly sophisticated, mature technology. However, to meet modern requirements for novel, high performance products and to respond to dynamic progress in technology, new concepts in heat treatment that allow realization of innovative materials structures with superior functionality are required. Consequently, herein we demonstrate a successful application of ultra-short millisecond flash lamp annealing (for short FLA) for surface solid and liquid phase processing of advanced materials fabricated in the form of bulk, thin-films or complex nano-heterostructures [1]. Overall principles of FLA, the state-of-the-art facilities as well as selected FLA-applications developed at the HZDR will be presented. The ms-range FLA has already proven to be a highly promising alternative to standard heating technologies e.g. furnace annealing, which cannot meet the material-manufacture-property requirements imposed by modern devices e.g. large-area electronics printed on flexible, low-thermal budget media. As FLA enables a selective surface-near high temperature heating in ultra-short cycles, the high processing efficiencies with a substantial drop of the overall fabrication costs can be achieved. The numerous advantages of ms-range FLA are already widely exploited in the semiconductor industry. However, we believe there is still plenty of room for novel innovative applications of the ms-FLA to be identified and be successfully developed.
References
1. W. Skorupa and H. Schmidt, Springer Series in Materials Science, 192 (2014)

Keywords: millisecond flash lamp annealing; liquid phase processing; large-area electronics; thin-films; transparent conducting oxides; Al-doped ZnO; photovoltaics

Involved research facilities

Related publications

  • Poster
    4th International Conference on Advances in Solidification Processes (ICASP-4), 08.-11.07.2014, Beaumont Estates, Old Windsor, United Kingdom

Permalink: https://www.hzdr.de/publications/Publ-21214