PolCarr: Smart carriers for advanced manufacturing in biotechnology.


PolCarr: Smart carriers for advanced manufacturing in biotechnology.

Wiesenhütter, K.; Urban, B.; Müller, M.; Müller, A.-D.; Skorupa, I.; Rüb, M.; Skorupa, W.; Schmidt, O. G.; Schmidt, H.

Further development of intelligent, highly-efficient and low-cost concepts in biosensors is a prime drive of the dynamically expanding biotechnology industry. As majority of the available market for biosensors is based on the functionalization of substrates, new approaches offering carriers with superior performance i.e. with easy-to-control immobilization, modification, transport and detection of the target analytes are strongly required. Consequently, herein we propose a novel, promising concept for fabrication of the smart carriers (PolCarr) for diverse applications in biotechnology. The PolCarr substrate consists of a doped Si wafer with an ultra-thin insulating top layer and a characteristic pattern of surface near electrostatic forces (SNEF) [Baumgart 2009]. The selective binding and release of the electrically polarizable molecules onto the PolCarr medium is purely driven by SNEF [Schmidt 2013]. Though, chemical-covalent and biological immobilization mechanisms are widely used by conventional biotechnology industry, they suffer from limited control. In stark contrast, the physical interaction via SNEF offers an excellent degree of control on the mm-nm scale. By attaching a structured bottom electrode to a locally doped Si wafer and voltage altering, SNEF can be precisely modulated in the nm range. Since SNEF are characterized by excellent environmental stability, the PolCarr carriers can be successfully utilized under a broad-spectrum of environmental conditions i.e. temperature, pH and humidity. The exceptional functionality of PolCarr makes it a suitable medium for typical biotechnology processing e.g. autoclaving for sterilization, incubation for cell growth, and for cryogenic applications for shock freezing, where conventional substrates may undergo critical failure. Finally, as the PolCarr technology originates from a standard, well-established semiconductor manufacture [Skorupa and Schmidt Springer 2014], the exceptionally facile carrier processing allows for realization of significant throughput and overall cost-reduction. Based on the highly-desirable and unique features of the PolCarr technology presented above, we strongly believe that our concept constitutes a high-value solution to the challenges faced by state-of-the-art biotechnology industry and may have a decisive impact on design and development of carriers for biotechnological manufacturing [Müller in preparation].
To protect the valuable IP, patent applications were filed in 2011 and 2012. To commercialize the PolCarr technology, a spin-off company is planned.

Keywords: biotechnology; biomaterials immobilization; carrier materials; biosensors; tissue engineering; doped Si-wafer; surface-near electrostatic forces; semiconductor industry

Involved research facilities

Related publications

  • Lecture (others)
    Bionection Partnering Conference for Technology Transfer in Life Sciences, 09.-10.10.2014, Dresden, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-21217