III–V semiconductor nanocrystal formation in silicon nanowires via liquid-phase epitaxy


III–V semiconductor nanocrystal formation in silicon nanowires via liquid-phase epitaxy

Prucnal, S.; Glaser, M.; Lugstein, A.; Bertagnolli, E.; Stöger-Pollach, M.; Zhou, S.; Helm, M.; Reichel, D.; Rebohle, L.; Turek, M.; Zuk, J.; Skorupa, W.

Direct integration of high-mobility III-V compound semiconductors with existing Si based CMOS processing platforms presents a main challenge to increase the CMOS performance and the scaling trend. Silicon hetero-nanowires with integrated III-V segments are one of the most promising candidates for advanced nano-optoelectronics as first demonstrated using molecular beam epitaxy techniques. Here we demonstrate a novel route for InAs/Si hybrid nanowire fabrication via millisecond range liquid-phase epitaxy regrowth using sequential ion beam implantation and flash-lamp annealing. We show that such highly mismatched systems can be monolithically integrated within a single nanowire. Optical and microstructural investigations confirm the high quality hetero-nanowire fabrication coupled with the formation of atomically sharp interface between Si and InAs segments. Such hybrid systems open new routes for future high-speed and multifunctional nanoelectronic devices on a single chip.

Keywords: liquid phase epitaxy; InAs; heteronanowires; silicon; ion implantation

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-21250