Charge Exchange and energy loss of slow highly charged ions in 1nm thick carbon nanomembranes


Charge Exchange and energy loss of slow highly charged ions in 1nm thick carbon nanomembranes

Wilhelm, R. A.; Gruber, E.; Ritter, R.; Heller, R.; Facsko, S.; Aumayr, F.

It has been demonstrated in recent years that slow highly charged ions can be used as an efficient tool for nano-structure formation on in- sulating solid surfaces mainly by deposition of their potential energy. By reducing the solid thickness into the nano-meter range a limit is reached where on the one hand the ion may not be completely neutralized in the solid membrane and on the other hand dissipation of the deposited energy may be limited to two spacial dimensions. To investigate the energy deposition and neutralization processes in 2D- materials by slow highly charged ions we performed charge exchange and energy loss measurements of slow highly charged Xe ions transmitted through ultra thin polymeric carbon membranes. Surprisingly, two distinct exit charge state distributions accompanied by charge ex- change dependent kinetic energy losses are observed. The energy loss for ions exhibiting large charge loss shows a quadratic dependency on the incident charge state, indicating that equilibrium stopping force values do not apply in this case. The combination of charge transfer and kinetic energy loss measurements allows us to link the two differ- ent exit charge state distributions to ion trajectories through distinct local electron densities distributions in the membrane.

Involved research facilities

Related publications

  • Lecture (Conference)
    Frühjahrestagung der Deutschen Physikalischen Gesellschaft - Sektion Festkörperphysik, 31.03.-04.04.2014, Dresden, Deutschland
  • Poster
    73th IUVSTA Workshop on Nanostructures on two-dimensional solids, 22.-26.09.2014, Eisenerz, Österreich
  • Lecture (Conference)
    Ionenstrahlworkshop 2014, 20.-22.07.2014, Paderborn, Deutschland
  • Lecture (Conference)
    Physics on a Boat, 03.-05.06.2014, Helsinki, Finnland

Permalink: https://www.hzdr.de/publications/Publ-21258