Effect of neutron flux on the solute cluster characteristics and hardening in RPV steels


Effect of neutron flux on the solute cluster characteristics and hardening in RPV steels

Bergner, F.; Chaouadi, R.; Dohi, K.; Hein, H.; Serrano, M.; Soneda, N.; Wagner, A.

Flux is an important variable of RPV steel embrittlement because of several reasons including the consideration of surveillance samples vs. RPV wall material, MTR vs. PWR/BWR irradiations and ions as a neutron substitute in the lab. The approach relies on the reasonable assumption that the flux effect on the mechanical properties is mediated by the flux-dependent evolutiooon of the irradiation-induced nanofeatures. In order to separate flux effects from the effect of the neutron fluence, pairs of samples of one and the same material irradiated at as different as possible flux up to about the same fluence are selected. These pairs of samples were fully characterized with respect to both mechanical property changes and the characteristics of irradiation-induced solute clusters. The results indicate that there is a pronounced effect of flux on cluster size, that there are minor flux effects on number density, volume fraction and composition of clusters and that SANS and APT provide consistent results on size and number density of clusters. The classical dispersed-barrier hardening model combined with deterministic growth and irradiation-enhanced diffusion describes the flux effect on the mechanical properties well.

Keywords: RPV steel; neutron irradiation; flux effect; SANS; APT

  • Lecture (Conference)
    18th Meeting of the International Group on Radiation Damage Mechanisms in Pressure Vessel Steels (IGRDM-18), 23.-28.11.2014, Miyazaki, Japan

Permalink: https://www.hzdr.de/publications/Publ-21329