Nonvolatile unipolar resistive switching in YMnO3 thin films


Nonvolatile unipolar resistive switching in YMnO3 thin films

Bogusz, A.; Prucnal, S.; Skorupa, W.; Blaschke, D.; Abendroth, B.; Stöcker, H.; Skorupa, I.; Bürger, D.; Schmidt, O. G.; Schmidt, H.

Due to its promising applications, resistive switching in oxides known also as a memristive effect, has gained a lot of attention both from scientists and industry. The multiferroic oxides as a switching medium offer a novel functionalities of the switching devices. Typically, the growth temperatures of such oxides are above 600°C and so far CMOS compatibility has not been achieved. As an example, the multiferroic YMnO3 exhibits unipolar resistive switching [1]. However, its high crystallization temperature (above 750°C) imposes difficulties in preparation of thin films on metal-coated substrates. This work compares the results of electrical and structural characterization of YMnO3 thin films grown on Pt/Ti/SiO2/Si substrates by pulsed laser deposition with two different approaches. In the first one, the polycrystalline YMnO3 films are deposited at 800°C. In the second approach, amorphous films deposited at 400°C are crystallized by millisecond range flash lamp annealing. It is shown that the ultra short annealing allows the preparation of polycrystalline YMnO3 films without deformation of the Pt/Ti electrode which exhibits improved endurance of resistive switching.

  • Lecture (Conference)
    Workshop AK Materialien für nichtflüchtige Speicher, 28.-29.04.2014, Chemnitz, Germany

Permalink: https://www.hzdr.de/publications/Publ-21344