Studying the constancy of galactic cosmic rays using cosmogenic noble gases and radionuclides in iron meteorites


Studying the constancy of galactic cosmic rays using cosmogenic noble gases and radionuclides in iron meteorites

Smith, T.; Leya, I.; Merchel, S.; Rugel, G.; Pavetich, S.; Wallner, A.; Fifield, K.; Tims, S.; Korschinek, G.

Cosmogenic noble gases and radionuclides in meteorites are the only tools that provide information about the cosmic ray exposure (CRE) history of meteorites. In space, meteoroids are irradiated by galactic cosmic rays (GCR), which produces, among others, stable and radioactive cosmogenic nuclides. It has been demonstrated that periodic variations in the GCR intensity induce periodic peaks in the CRE age histograms. Therefore, searching for periodic peaks in CRE histograms enables one to obtain information about GCR fluency variations. Since expected GCR fluency variations have periodicities of a few hundred million years, one needs meteorites irradiated for at least that long. Iron meteorites, which have CRE ages ranging from a few million to a few billion years, are the best candidates. So far we measured noble gases and radionuclides in 28 iron meteorites by noble gas mass spectrometry and accelerator mass spectrometry. First CRE age histograms have been established and will be presented. Further analyses are ongoing and will improve the statistical interpretation, providing new information on the temporal variability of the GCR fluency.

Keywords: accelerator mass spectrometry; GCR; cosmic radiation

Involved research facilities

Related publications

  • Lecture (Conference)
    DPG-Frühjahrstagung der Sektion AMOP, 23.-27.03.2015, Heidelberg, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-21390