From basalt to ryholite: Uniform components and mixing regimes in magma systems of the Central Andes


From basalt to ryholite: Uniform components and mixing regimes in magma systems of the Central Andes

Wörner, G.; Banaszak, M.; Brandmeier, M.; Heistek, R.

The major element most mafic compositions of Quaternary to Miocene magmatism in the Andean Central Volcanic Zone are rather variable but present throughout the evolution of the Central Andes in the past 20 Ma. Compositions encompass high-K to medium-K calc-alkaline basaltic andesites (52-55 SiO2 wt%) and have large ranges in major (3.6-9.4 wt% MgO, 4-7 wt% Na2O+K2O, 0.8-1.8 wt% TiO2) and trace element concentrations (9-197 ppm Ni, 501-1944 ppm Sr, 95-257 ppm Zr), as well as trace element ratios (LILE/HFSE: 93>Sr/Y>24; LREE/HREE: 8>La/Yb>63). Such a remarkable variability and the absence of truly primitive lavas in the CVZ since the onset of crustal thickening reflects distinct petrogenetic processes during ascent and evolution of mantle-derived melts traversing exceptionally thick continental crust (70 km).
Our statistical analysis (Polytopic Vector Analysis, PVA) on a on a subset of our large data base of Andean magmas (>1000 samples) which have complete major- and trace element data and isotope compositions shows that the entire compositional space of Central Andean magmas can be described by the three same endmembers: (1) a low-Mg high-Al calc-alkaline basaltic andesite (BA), (2) a incompatible trace element enriched basalt (EB), and 3) a high-K calc-alkaline rhyodacite (RD). A first mixing stage produces a range of hybrid baseline magmas consisting of the EB and BA. These represent typical recharge magmas into more evolved magma chambers at shallower crustal levels. There, a second mixing stage occurs with mixing between the already mixed, mafic (BA+EB) and the silicic RD component, which typically is crystal rich. Mixing proportions between these endmembers vary widely and magma compositions of endmembers and/or hybrids are overprinted by different degrees of magmatic differentiation and crustal assimilation.
These three endmember magmas enclose nearly all Quaternary CVZ lavas in a mixing triangle and accounts for the entire compositional variability of the Quaternary volcanic rocks in the CVZ. A first mixing stage produces hybrid baseline magmas consisting of the EB and BA. The second mixing stage represents shallow crustal magma mixing between the already mixed, mafic (BA+EB) and the silicic RD components. Mixing proportions between these endmembers vary widely and magma compositions of endmembers and/or hybrids are overprinted by different degrees of magmatic differentiation and up to 20% crustal assimilation.
A particular setting is required for andesite lava fields that occur throughout the Central Andes (Huambo, Andagua, Negrillar). These Quaternary lava fields are unrelated to stratovolcanoes and probably reflect direct differentiation of the mafic hybrids towards phenocryst poor pyroxene-andesites without interaction with crystal-rich shallow crustal magmas.
A survey of our data base including older (Pliocene and Miocene) andesites and dacites shows a surprisingly similar compositional pattern.
The BA, EB, and RD endmembers represent distinct magma sources: the mantle wedge, enriched lithospheric mantle, and the continental crust, respectively. Therefore, these endmembers are expected to be ubiquitous in the central Andes and have uniform geochemical character.
These mixed magmas give rise to and are genetically associated with large volume ignimbrite eruptions (ignimbrite “flare-ups” with >3000km3 erupted in 1 Ma) that are hybrids between 20 to 50% of a crustal melting endmember and a mantle component. Further evolution of these silicic magmas towards the thermal minimum results in rather uniform magma compositions smoothing out compositional diversity in the constituent magmas. A rigorous statistical analyses of the ignimbrite compositional data throughout the Central Andes identifies four groups that reflect the assembly of large magma volumes from slightly distinct sources at different P-T-X conditions.

  • Contribution to proceedings
    IMA2014 - 21st General Meeting of the International Mineralogical Association, 01.-05.09.2014, Sandton Convention Centre, Gauteng South Africa, South Africa

Permalink: https://www.hzdr.de/publications/Publ-21446