Highly charged ion induced nanostructures at surfaces by strong electronic excitations


Highly charged ion induced nanostructures at surfaces by strong electronic excitations

Wilhelm, R. A.; El-Said, A. S.; Krok, F.; Heller, R.; Gruber, E.; Aumayr, F.; Facsko, S.

Nanostructure formation by single impacts of slow highly charged ions can be associated with high density of electronic excitations at the impact points of the ions. Experimental results show that depending on the target material these electronic excitations may lead to very large desorption yields in the order of a few 1000 atoms per ion or the formation of nanohillocks at the impact site. Even in ultra-thin insulating membranes the formation of nanometer sized pores are observed after ion impact. In this paper we show recent results on nanostructure formation by highly charged ions and compare these to structures and single defects observed after intense electron and light ion irradiation on ionic crystals and Graphene. Additional data on energy loss, charge exchange and secondary electron emission of highly charged ions clearly show that the ion's charge state dominate the defect formation at the surface.

Keywords: slow highly charged ion; HCI; ion charge state; nanostructure; electronic excitation; color centers

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-21633