Direct measurement of the magnetocaloric effect in Ni50Mn35In15 in pulsed magnetic fields


Direct measurement of the magnetocaloric effect in Ni50Mn35In15 in pulsed magnetic fields

Ghorbani Zavareh, M.; Salazar Mejia, C.; Nayak, A. K.; Skourski, Y.; Wosnitza, J.; Felser, C.; Nicklas, M.

Ferromagnetic shape-memory Heusler alloys undergo a martensitic transformation, i.e., a first-order structural transition from a cubic high-temperature phase to a low-temperature monoclinic phase. Due to a pronounced magneto-structural interaction in these compounds, a strong magnetic field can induce a metamagnetic transition and drive the system from a martensite to an austenite phase. In this case, both lattice and magnetic entropy contribute to the net magnetocaloric effect (MCE). We have measured the MCE of the shape memory Heusler alloy Ni50Mn35In15 using a set-up for direct magnetocaloric measurements in pulsed magnetic fields. The martensitic transition occurs at about 246 K in zero field and the material has a Curie temperature of 315 K. We find a saturation of the inverse MCE, related to the first-order martensitic transition, with a maximum value of -7 K. The MCE associated with the Curie temperature evolves as typical for a second-order magnetic transition. The effect is positive, nearly temperature independent and yields a value of 11 K.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)
  • Lecture (Conference)
    Frühjahrstagung der DPG 2015, 15.-20.03.2015, Berlin, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-21856