Speciation studies of uranyl(VI) using an advanced combination of theoretical and luminescence spectroscopic methods


Speciation studies of uranyl(VI) using an advanced combination of theoretical and luminescence spectroscopic methods

Drobot, B.; Tsushima, S.; Steudtner, R.; Raff, J.; Geipel, G.; Brendler, V.

Speciation constitutes the basis for actinide complexation studies. These systems can be very complex and challenging especially because of the polynuclear species. An advanced combination of theoretical and experimental methods is proposed here. Continuous wave (CW) and time-resolved laser-induced fluorescence spectroscopy (TRLFS) data of uranyl(VI) hydrolysis were analyzed using parallel factor analysis (PARAFAC). Distribution patterns of five major species were thereby derived under a fixed uranyl concentration (10-5 M) over a wide pH range from 2 to 11. UV (180 nm to 370 nm) excitation spectra were extracted for individual species. Time-dependent density functional theory (TD-DFT) calculations revealed ligand excitation (water, hydroxo, oxo) in this region and ligand-to-metal charge transfer (LMCT) responsible for luminescence. Thus excitation in the UV is extreme ligand sensitive and highly specific. Combining findings from PARAFAC and DFT the aquo complex (1:0) and four hydroxo complexes (1:1, 3:5, 3:7 and 1:3) were identified and characterized.

  • Lecture (Conference)
    Anakon 2015, 23.-26.03.2015, Graz, Östereich

Permalink: https://www.hzdr.de/publications/Publ-21894