The inclined rotating tubular fixed bed reactor for process intensification of heterogeneous catalytic multiphase reactions


The inclined rotating tubular fixed bed reactor for process intensification of heterogeneous catalytic multiphase reactions

Härting, H.-U.; Lange, R.; Schubert, M.

The inclined rotating tubular fixed bed reactor has been introduced recently as a new concept for the implementation of multiphase processes, in particular for hetero-geneously catalysed gas-liquid reactions. Commonly applied trickle bed reactors (TBR) suffer from liquid maldistribution and low mass and heat transfer rates and have therefore been subject to process intensification: periodic liquid flow rate modulation at the reactor inlet was introduced, which leads to elevated space time yields in comparison to steady-state operation. However, the beneficial effects decay rapidly along the reactor length and maldistribution is not effectively curbed.
To fully utilise the positive effects of such modulation strategy, the new reactor concept is operated inclined against the vertical and rotated permanently. This operation mode ensures a wetting intermittency via periodic immersion of the whole catalyst packing, which is clamped between retaining grids. Furthermore, it allows adjusting different flow regimes, i.e. stratified flow or annular flow.
The new reactor concept enables also tuning the liquid residence time at constant gas and liquid flow rates. The wetting intermittency results in a complete utilization of the catalyst on the reactor scale and in thinner liquid films at the catalyst surface, which enhances the accessibility of the active sites for the gaseous reactants. The latter is proven by an increased space time yield compared to conventional TBR operation for the hydrogenation of α-methylstyrene to cumene.
In this presentation, the performance of the new reactor concept will be assessed based on reactive studies. Furthermore, the results will be discussed with respect to the prevailing flow regimes investigated via gamma-ray computed tomography, as well as liquid residence time and axial dispersion obtained by a stimulus-response technique using embedded wire mesh sensors.

Keywords: Hydrogenation; Heterogeneous Catalysis; Multiphase Flow; Flow Regimes

  • Lecture (Conference)
    ESCRE 2015 - European Symposium on Chemical Reaction Engineering, 27.-30.10.2015, Fürstenfeldbruck, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-21897