Photocathodes for High Brightness Photo Injectors


Photocathodes for High Brightness Photo Injectors

Xiang, R.; Teichert, J.

The development of the photo-injector has become a significant technology for the future light sources and the electron-ion collider. There are a lot of opportunities to improve the electron source quality, also for the photocathodes. Especially for the high average power gun producing up to mA level of average current, the searching for the better photocathodes is a principal technical challenge. The photocathodes used in the electron gun require four important aspects: high efficiency, long life time, small transverse emittance and prompt time response. The quantum efficiency (QE) needs to be made more reliable, and the cathode material must be more robust. Thus there is a strong motivation to push the cathode R&D: one hand is to modify the present cathodes; the other hand is to search new materials.
In this presentation, we focus on the photocathode research for high brightness gun, DC or RF/SRF guns. There are several types of cathodes, such as the metallic photocathodes, the semiconductor photocathodes, and the recent superconducting (SC) cathodes and the new plasma-enhanced cathodes. The “conventional” normal conducting (NC) metallic photocathodes, such as Cu or Mg, are most robust for RF guns, but their QEs are pitifully very low, mostly on the level of 10-5. The semiconductor photocathodes, alkali antimonides, III-V GaAs(Cs), Cs2Te, have the best QE up to 1~10% but critical working environment is required. Among them, Cs2Te is relative robust and can be used in most of RF/SRF guns. And Cs2KSb achieves the highest current record 65mA in Cornell DC gun. The SC photocathodes consisting of Nb and Pb have been well investigated but the drive laser requirement is more challenging.

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-21920