Co-doping GaMnP with Zinc and Carbon


Co-doping GaMnP with Zinc and Carbon

Hentschel, H.; Khalid, M.; Yuan, Y.; Helm, M.; Zhou, S.

Spintronics appears to be a new and exciting field of technology, but there is still a lag of suitable materials. In principle magnetic semiconductors (DMS) would be an excellent choice, but even their highest reached Curie temperature (Tc) in GaMnAs is still too low for practical usage. Ferromagnetism in DMS is suggested to be holes according to the Zener-Model. Therefore, it is expected to increase Tc by adding additional holes, e.g. co-doping. But there is a high risk to induce more defects, especially interstitial Mn atoms. Indeed, previous investigation revealed a lower Tc in carbon codoped GaMnAs [1]. Ion Implantation followed by laser annealing might overcome this problem. We choose ferromagnetic GaMnP since it shows insulating behavior [2]. Co-doping with shallow acceptors may lead to a more pronounced change in the conductivity of GaMnP. The samples were investigated with SQUID-VSM and Hall-Effect measurement. First results do not show an increase in Tc. Structural analysis is in progress to check if more defects appear upon carbon codoping.
[1] G. M. Schott, et al., Appl. Phys. Lett. 85, 4678 (2004).
[2] M. A. Scarpulla, et al., Phys. Rev. Lett., 95, 207204 (2005).

Keywords: DMS; Co-Doping; GaMnP

Involved research facilities

Related publications

  • Lecture (Conference)
    79. Jahrestagung der DPG und DPG-Frühjahrstagung, 15.-20.03.2015, Berlin, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-21934