Hydrodynamic and mass transfer properties of a bubble column with vertically inserted tube bundles


Hydrodynamic and mass transfer properties of a bubble column with vertically inserted tube bundles

Šimić, N.; Breiler, K.; Schubert, M.

The objective of this study is to examine the influence of different vertical tube bundle designs on the bubble dynamics and on the mass transfer rates in a bubble column. The studies in the open literature examining the performance of bubble columns with vertically inserted tube bundles have focused primarily on the coverage of the cross-sectional area of the bubble column by the tube bundle (CSA). The most frequently used coverages are the 5% and the 25% (± 3%) which mimic the heat exchangers utilized in the processes of methanol and Fischer-Tropsch syntheses. Other than that, the designs of tube bundles seem to be arbitrarily chosen and feature a number of different configurations of layouts, tube diameters and tube lengths. From the current state of research, it is thus rather difficult to draw conclusions on the optimal design of a heat exchanger suitable for use in bubble columns (Youssef et al., 2013). Intuitively, it can be concluded that the most important design features of tube bundles affecting the flow are the distance between the tubes and the unit cell area enclosed by the tubes in their respective arrangements. Accordingly, the study aims on a systematic analysis on the effect of these geometric parameters.

Keywords: bubble column; internals; heat exchanger; tube bundle; hydrodynamics; gas holdup; bubble size distribution; mass transfer; X-ray tomography

Involved research facilities

  • TOPFLOW Facility
  • Poster
    12th International Conference on Gas-Liquid & Gas-Liquid-Solid Reactor Engineering (GLS12), 28.06.-01.07.2015, New York City, USA

Permalink: https://www.hzdr.de/publications/Publ-22189