Contactless magnetic excitation of acoustic cavitation in liquid metals


Contactless magnetic excitation of acoustic cavitation in liquid metals

Grants, I.; Gerbeth, G.; Bojarevics, A.

A steady axial magnetic field is applied to a liquid metal zone heated by induction currents. The resulting alternating Lorentz force causes pressure oscillations that being strong enough lead to cavitation in the molten metal. Amplitude of the pressure oscillations is proportional to the product of the induced currents and the steady axial magnetic field induction. We follow an approach where the acoustic pressure is maximized by the induction currents. The onset of cavitation is identified by the occurrence of sub-harmonics of the drive frequency in sound recorded at the surface of the experimental cell. It is demonstrated that cavitation in a liquid metal may be excited by a superimposed axial magnetic field of a moderate 0.5 T induction.

Keywords: ALUMINUM-ALLOYS; SOLIDIFICATION; ULTRASOUND; DYNAMICS

Permalink: https://www.hzdr.de/publications/Publ-22199