Modelling of the electromagnetic braking effect in the continuous casting process of steel


Modelling of the electromagnetic braking effect in the continuous casting process of steel

Timmel, K.; Willers, B.; Kratzsch, C.; Schwarze, R.; Eckert, S.; Gerbeth, G.

It is known from industry and from scientific studies that the steel quality is significantly governed by the melt flow in the mold. Therefore, big efforts are made to adjust and to control the flow in the mold in a proper way by plant design or by the contactless, adjustable and flexible use of electromagnetic fields. These electromagnetic fields are already in industrial use for decades, but direct flow measurements about the actual effect are still rather scarce.
Three experimental facilities operating with low melting liquid metals were built at HZDR to investigate the continuous casting process of steel and to provide data for the validation of numerical simulations. The effect of the electromagnetic brake was one of the topics investigated in these low melting liquid metal experiments [1]. This paper will present new results from the LIMMCAST liquid metal experiments. Compared to previous results, the new experiments are operated in a continuous mode, providing a possibility to study the flow behavior in the stationary regime. Additional measurements focus on the behavior of the free liquid metal surface in the mold and the effect of the bulk flow on it. The paper also presents numerical results using Scale Adaptive Simulations (SAS).

Keywords: Continuous casting of steel; electro-magnetic flow control; liquid metal models; numerical simulation; scale adaptive simulations

  • Lecture (Conference)
    8th International Conference on Electromagnetic Processing of Materials (EPM2015), 12.-16.10.2015, Cannes, Frankreich
  • Contribution to proceedings
    8th International Conference on Electromagnetic Processing of Materials (EPM2015), 12.-16.10.2015, Cannes, Frankreich, 978-2-9553861-0-1, 373-376

Permalink: https://www.hzdr.de/publications/Publ-22266