Analysis and applications of a generalized multi-field two fluid approach for plunging jet configuration


Analysis and applications of a generalized multi-field two fluid approach for plunging jet configuration

Krepper, E.; Zidouni, F.; Lucas, D.

The paper describes the simulation of a plunging jet. A generalized approach developed for the simulation of two-phase flow problems with multi-scale interfacial structures is applied for this problem. The GEneralized TwO Phase flow (GENTOP) modeling approach considers different scales in term of interfacial structure. The explicit statistical simulation of the interface between continuous gas and fluid is combined with the Euler/Euler simulation of dispersed gas. For the dispersed gas the Multiple Size Group (MUSIG) approach simulates different bubble sizes. The mass transfer between the bubble sizes is considered by bubble breakup and coalescence models. The gas entrainment during the plunging jet is described by the transition between continuous gas and dispersed gas. Here for a special sub grid model is applied.
This set of models is applied for the simulation of plunging jet experiments performed by Chanson et al. (2004). In the tests different geometric scale of plunging jet were investigated and here analyzed. The paper shows the capabilities of this approach and identifies weak points which need further development.

Keywords: CFD; two phase flow; Euler/Euler approach; interfacial area; plunging jet

  • Lecture (Conference)
    The 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16), 30.08.-04.09.2015, Chicago, USA
  • Contribution to proceedings
    The 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-16), 30.08.-04.09.2015, Chicago, USA

Permalink: https://www.hzdr.de/publications/Publ-22390