Optical free-electron lasers on table-top with Traveling-wave Thomson scattering


Optical free-electron lasers on table-top with Traveling-wave Thomson scattering

Debus, A.; Steiniger, K.; Bussmann, M.; Pausch, R.; Cowan, T.; Irman, A.; Jochmann, A.; Sauerbrey, R.; Schramm, U.

Optical FELs (OFELs) based on Traveling-wave Thomson scattering (TWTS) optimally exploit the high spectral photon density in high-power laser pulses by spatially stretching the laser pulse and overlapping it with the electrons in a side scattering setup. The introduction of a laser pulse-front tilt provides for interaction lengths appropriate for FEL operation. With careful dispersion control, electrons witness an undulator field of almost constant strength and wavelength over hundreds to thousands of undulator periods, thus giving enough time for self-amplified spontaneous emission (SASE) to seed the FEL instability and the realization of large laser gains.
We provide an overview on the differences between TWTS OFELs, head-on OFEL designs and magnetic undulator FELs. In this dicussion we emphasize the respective impact on transverse coherence, quantum recoil and space-charge.

Keywords: Optical free-electron laser; OFEL; Traveling-wave; Thomson scattering; TWTS; FEL; X-ray

  • Lecture (Conference)
    DPG Frühjahrstagung Wuppertal 2015, 09.-13.03.2015, Wuppertal, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-22527