Relaxation attenuation of ultrasound by the jahn-teller centers in ZnSe:Cr in high magnetic fields


Relaxation attenuation of ultrasound by the jahn-teller centers in ZnSe:Cr in high magnetic fields

Averkiev, N. S.; Bersuker, I. B.; Gudkov, V. V.; Zherlitsyn, S.; Yasin, S.; Zhevstovskikh, I. V.; Baryshnikov, K. A.; Monakhov, A. M.; Sarychev, M. N.; Korostelin, Y.; Landman, A.

The magnetic field dependence of ultrasonic attenuation α(B) of slow shear waves in the ZnSe:Cr2+ crystal at a number of fixed temperatures from T = 1.4 K to 20 K in magnetic fields of up to B = 14 T was investigated. For magnetic fields B above 5 T we found that the attenuation increases with B monotonically, and at a given temperature it is proportional to the magnitude of relaxation attenuation at B = 0. We show that the magnetic field dependent attenuation is due to the change in populations of the lowest energy levels of the impurity centers CrZn4Se, produced by the Jahn-Teller effect and split by the spin-orbital interaction and the magnetic field. The calculations carried out without fitting parameters are in good agreement with the experimental data.

Involved research facilities

  • High Magnetic Field Laboratory (HLD)

Permalink: https://www.hzdr.de/publications/Publ-22738