Co2Mn0.6Fe0.4Si: A Heusler compound opening new perspectives in magnon spintronics


Co2Mn0.6Fe0.4Si: A Heusler compound opening new perspectives in magnon spintronics

Sebastian, T.; Hillebrands, B.

This chapter addresses magnon propagation in the Heusler compound Co2Mn0.6Fe0.4Si and the corresponding perspectives for the emerging field of magnon spintronics. The concept of magnon spintronics requires the utilization of advanced materials providing, in particular, a low magnetic Gilbert damping and compatibility with industrial standards concerning the fabrication ofmicro-and nanostructures. We present how this challenge can be addressed by the use of low-damping Co2Mn0.6Fe0.4Si films on the basis of recent studies using micro-focus Brillouin light scattering spectroscopy. The low damping in this Heusler compound not only allows for the realization of increased propagation distances. The pronounced occurrence of nonlinear phenomena might even lead the way towards novel concepts and functionalities in magnonic devices.

Permalink: https://www.hzdr.de/publications/Publ-22779