Gas-Liquid Mass Transfer in a Tubular Reactor with Solid Foam Packing


Gas-Liquid Mass Transfer in a Tubular Reactor with Solid Foam Packing

Mohammed, I.; Bauer, T.; Schubert, M.; Lange, R.

Chemical reactors with a fixed-bed of catalyst particles are widely applied for continuous multi-phase processes in the petrochemical, chemical, and biochemical industry. However, the performance of these reactors often suffers from some drawbacks, such as high energy consumption due to high pressure drop as well as mass and heat transfer limitations. One solution is to replace particle catalysts such as tablets, spheres and cylinders with structured catalysts based on open-cell solid foams. This new structure provides large specific surface area of up to 2000 m2/m3 at high open bed porosities between 75 - 97%. As result, the pressure drop of the gas-liquid two-phase flow is comparatively low (Mohammed et al. 2013).
For the design of tubular reactors with foam packings knowledge about gas-liquid mass transfer is important. The goal of this study was to examine the volumetric gas-liquid mass transfer in dependence on operating conditions and foam pore density expressed in the unit pores per inch. The results will be compared to data from the literature for both foam packings and particle packings. The experiments were based on physical desorption and the volumetric mass transfer rates are calculated according the two-film theory by Whitman (1932). The entrance effects were eliminated by performing hydrodynamically identical tests with two different test section lengths, and using the shorter test section results for ‘subtraction’ of entrance effects from the longer test section.
The results show that the volumetric gas-liquid mass transfer coefficient rises with increasing liquid superficial velocity for all foam pore densities studied, while minor effects of the gas velocity were observed. A new correlation to predict the volumetric mass transfer coefficient is derived from the experiments. The gas-liquid mass transfer in foam packings was higher than in trickle beds and beds of rasching rings.

Keywords: solid foam; mass transfer; oxygen desorption; multiphase reactors

  • Lecture (Conference)
    ESCRE 2015 - European Symposium on Chemical Reaction Engineering, 27.-30.10.2015, Fürstenfeld, Deutschland

Permalink: https://www.hzdr.de/publications/Publ-22871