Investigations on the anisotropy of charge carrier excitation in graphene with low energetic photons


Investigations on the anisotropy of charge carrier excitation in graphene with low energetic photons

Otto, J.; Mittendorff, M.; Winzer, T.; Malic, E.; Knorr, A.; Schneider, H.; Helm, M.; Winnerl, S.

Recently we have demonstrated anisotropic excitation and relaxation of charge carriers in graphene [1]. A near-infrared pump probe experiment with varied angle between pump and probe polarization revealed anisotropic carrier populations on a 100 fs timescale as predicted by microscopic theory. An isotropic distribution is then reached by scattering via optical phonons.
Now we perform an experiment where scattering of electrons with optical phonons is strongly suppressed. To this end a photon energy of 88 meV, i.e. far below the optical phonon energy, is applied and the sample is kept at 20 K. The experiments, where the free-electron laser FELBE was used as a source, revealed an anisotropic charge carrier distribution on timescales of up to 10 ps (cf. Fig. 1). In particular we investigate the dependence of the pump-probe signals on pump fluence. We find that the anisotropy is most pronounced for low fluences and vanishes for fluences in the µJ/cm2 range. These results, complemented by microscopic theory, give clear insights in the role of Coulomb scattering on the carrier dynamics. Due to the predominantly collinear nature of Coulomb scattering, the anisotropy at low fluences is preserved on timescales larger than the ~30 fs timescale of the thermalization due to Coulomb scattering. At high fluences, however, Coulomb scattering efficiently redistributes carriers towards an isotropic distribution.

References
[1] M. Mittendorff, T. Winzer, E. Malic, A. Knorr, C. Berger, W. A. de Heer, H. Schneider, M. Helm and S. Winnerl, Nano Lett., 14, 1504-1507, (2014)

Keywords: graphene; ultrafast dynamics

Involved research facilities

Related publications

  • Poster
    Graphene Week 2015, 22.-26.06.2015, Manchester, UK

Permalink: https://www.hzdr.de/publications/Publ-22901