Reverse Epitaxy on Semiconductor Surfaces


Reverse Epitaxy on Semiconductor Surfaces

Facsko, S.; Ou, X.; Hübner, R.; Grenzer, J.; Heinig, K.-H.

Arrays of semiconductor nanostructures are emerging as building blocks for next generation of electronic and optoelectronic nano-devices. In molecular beam epitaxy (MBE) the continuous deposition of atoms can lead to growth of self-organized 3D nanostructures. One of the possible surface instabilities, which is responsible for this kind of growth, is caused by the Ehrlich-Schwoebel (ES) barrier, i.e. an additional diffusion barrier for ad-atoms to cross terrace steps [1]. The arriving atoms are trapped on terraces and can again nucleate to form new terraces. This mechanism leads to the growth of pyramidal mounds on the surface with facets corresponding to energetically favored crystal planes. An analogous mechanism is also observed on ion irradiated surfaces. However, ion sputtering leads to the erosion of the surfaces and at room temperature semiconductor surfaces become amorphous. At these conditions various periodic patterns are observed. [2,3] For device fabrication, a crystalline surface of high quality is indispensable.
In this talk, we demonstrate single crystal elemental (Si and Ge) and compound semiconductor (III-V) nanostructure pattern formation based on a “reverse epitaxy” process. Vacancies created during ion beam irradiation at elevated temperature distribute according to the crystallographic anisotropy, which results in an orientation-dependent pattern formation on single crystal semiconductor surfaces. This process shows nicely the equivalence of epitaxy with deposited adatoms and “reverse epitaxy” with ion induced surface vacancies on semiconductors. The formation of these patterns is interpreted as the result of a surface instability due to an Ehrlich-Schwoebel barrier for ion induced surface vacancies. The potential application of reverse epitaxy on fabrication of UUV optical grating and of metallic nanowires will be discussed.

[1] P. Politi, G. Grenet, A. Marty, A. Ponchet, J. Villain, Phys. Rep. 324, 271 (2000).
[2] S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, and H. L. Hartnagel, Science 285, 1551 (1999).
[3] W. L. Chan and E. Chason, J. Appl. Phys. 101, 121301 (2007).

Keywords: ion induced nanopatterns

Involved research facilities

Related publications

  • Invited lecture (Conferences)
    8th International Workshop on Nanoscale Pattern Formation at Surfaces, 12.-16.07.2015, Krakow, Poland

Permalink: https://www.hzdr.de/publications/Publ-23045