Novel implementation of memristive systems for data encryption and obfuscation


Novel implementation of memristive systems for data encryption and obfuscation

Du, N.; Manjunath, N.; Shuai, Y.; Buerger, D.; Skorupa, I.; Schueffny, R.; Mayr, C.; Basov, D.; Di Ventra, M.; Schmidt, O. G.; Schmidt, H.

With the rise of big data handling, new solutions are required to drive cryptographic algorithms for maintaining data security. Here, we exploit the nonvolatile, nonlinear resistance change in BiFeO3 memristors [Shuai et al., J. Appl. Phys. 109, 124117 (2011)] by applying a voltage for the generation of second and higher harmonics and develop a new memristor-based encoding system from it to encrypt and obfuscate data. It is found that a BiFeO3 memristor in high and low resistance state can be used to generate two clearly distinguishable sets of second and higher harmonics as recently predicted theoretically [Cohen et al., Appl. Phys. Lett. 100, 133109 (2012)]. The computed autocorrelation of encrypted data using higher harmonics generated by a BiFeO3 memristor shows that the encoded data distribute randomly.

Keywords: analog resistive switch; flexible barrier height; BiFeO3; fast and energy-efficient resistive swiching

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-23099