Positron Annihilation Study of Vacancy-Type Defects in Al Single Crystal Foils with the Tweed Structures Across the Surface


Positron Annihilation Study of Vacancy-Type Defects in Al Single Crystal Foils with the Tweed Structures Across the Surface

Kuznetsov, P.; Cizek, J.; Hruska, P.; Anwand, W.; Bordulev, Y.; Lider, A.; Laptev, R.; Mironov, Y.

The vacancy-type defects in the aluminum single crystal foils after a series of the cyclic tensions were studied using positron annihilation. Two components were identified in the positron lifetime spectra associated with the annihilation of free positrons and positrons trapped by dislocations. With increasing number of cycles the dislocation density firstly increases and reaches a maximum value at N = 10 000 cycles but then it gradually decreases and at N = 70 000 cycles falls down to the level typical for the virgin samples. The direct evidence on the formation of a two-phase system “defective near-surface layer/base Al crystal” in aluminum foils at cyclic tension was obtained using a positron beam with the variable energy.

Keywords: Al single crystal foils; tweed structures; cyclic tension; positron annihilation

Involved research facilities

Related publications

Permalink: https://www.hzdr.de/publications/Publ-23127