Process intensification of gas-liquid downflow and upflow packed beds by a new low-shear rotating reactor concept


Process intensification of gas-liquid downflow and upflow packed beds by a new low-shear rotating reactor concept

Dashliborun, A. M.; Härting, H.-U.; Schubert, M.; Larachi, F.

In the present work, a new low-shear rotating reactor concept was introduced for process intensification of heterogeneous catalytic reactions in cocurrent gas-liquid downflow and upflow packed-bed reactors. In order to properly assess potential advantages of this new reactor concept, exhaustive hydrodynamic experiments were carried out using embedded low-intrusive wire mesh sensors. The effect of rotational velocities on liquid flow patterns in the bed cross-section, liquid saturation, pressure drop, and regime transition was investigated. Furthermore, liquid residence time and Péclet number estimated by a stimulus-response technique and a macro-mixing model were presented and discussed with respect to the prevailing flow patterns. The results revealed that the column rotation induces different flow patterns in the cross-section of packed bed operating in a concurrent downflow or upflow mode. Moreover, the new reactor concept exhibits a more flexible adjustment of pressure drop, liquid saturation, liquid residence time and back-mixing at constant flow rates.

Keywords: Process intensification; low-shear rotating fixed bed; hydrodynamics; upflow and downflow; flow pattern

  • Open Access Logo AIChE Journal 63(2017)1, 283-294
    Online First (2016) DOI: 10.1002/aic.15549
    Cited 20 times in Scopus
  • Lecture (Conference)
    International Symposia on Chemical Reaction Engineering - ISCRE24, 12.-15.06.2016, Minneapolis, USA

Permalink: https://www.hzdr.de/publications/Publ-23502